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Abstract

This paper describes the development of a novel modelling tool for evaluation of solid oxide fuel cell (SOFC) performance. An artificial

neural network (ANN) is trained with a reduced amount of data generated by a validated cell model, and it is then capable of learning the

generic functional relationship between inputs and outputs of the system. Once the network is trained, the ANN-driven simulator can predict

different operational parameters of the SOFC (i.e. gas flows, operational voltages, current density, etc.) avoiding the detailed description of the

fuel cell processes. The highly parallel connectivity within the ANN further reduces the computational time. In a real case, the necessary data

for training the ANN simulator would be extracted from experiments. This simulator could be suitable for different applications in the fuel cell

field, such as, the construction of performance maps and operating point optimisation and analysis. All this is performed with minimum time

demand and good accuracy. This intelligent model together with the operational conditions may provide useful insight into SOFC operating

characteristics and improved means of selecting operating conditions, reducing costs and the need for extensive experiments.
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1. Introduction

Solid oxide fuel cell (SOFC) technology is under devel-

opment for distributed generation (DG) of power at load

centres. The SOFC offers high electric efficiencies in excess

of 45% (natural gas, full load) for normal cycle operation

and over 55% for a combined cycle pressurised SOFC-gas

turbine system [1]. An important tool in the fuel cell

development is mathematical modelling, which has the

capability of predicting the fuel cell performance. To avoid

extensive and costly experiments, the fuel cell developers

use detailed cell and stack models for economic assessments

and development purposes. From the results of the model

simulations, conducted for a broad range of operating con-

ditions, performance charts can be constructed. Since these

models are rather detailed descriptions of the physical

processes and conditions occurring in the fuel cell, they

are unnecessarily complex and cumbersome, especially

when the goal is operating point analysis and optimisation.

In this work, a statistical data-driven approach, i.e. arti-

ficial neural networks (ANNs), is introduced as an alter-

native to these mathematical models. ANNs are used in a

wide range of engineering and non-engineering applica-

tions, such as, pattern recognition (spectroscopy, protein

analysis, fingerprint identification), as well as behaviour

prediction and function approximation (stock market fore-

casting, energy demand forecasting, process control sys-

tems). These methods are inspired by the central nervous

system, exploiting features such as high connectivity and

parallel information processing, exactly like in the human

brain. The characteristic feature of ANNs is that they are not

programmed; they are trained to learn by experience [6].

In this work, a two-layer feed-forward network has been

trained (with the backpropagation (BP) algorithm) to learn

the performance parameters in a planar SOFC. The data used

during the training has been generated with a validated

physical model, which is presented in detail in [2]. In future

applications, it is hoped that the data will be available from

various fuel cell experiments. However, encouraging

results from this study demonstrate that there is a potential

to introduce this tool in the development of fuel cells, in

order to reduce the calculation time compared with the

physical models, and to save time and money in both the
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experimental phase and the manufacturing process of these

units.

The first part of this paper deals with a general overview

of the chosen method, while the second part reports the

results of the ANN model applied to the SOFC.

2. Brief description of feed-forward neural networks

An ANN can be regarded as a black box which is able to

produce certain output data as a response to a specific

combination of input data. By receiving the data for an

existing system, the ANN can be trained to learn the internal

relationships that govern that system, and predict its beha-

viour without any physical equations. The major advantage

of ANNs, compared to traditional polynomial mapping, is

that they are able to perform non-linear mapping of multi-

dimensional functions [3], i.e. relationships from many

inputs to many outputs. The drawback of this technique is

that the solution space becomes non-linear as well, contain-

ing many solutions and increasing the risk of getting stuck in

a non-optimal solution, or local minimum. In any event,

once the ANN is trained, there are several techniques for

validating it and ensuring its generalisation ability.

Fig. 1 illustrates the structure of a feed-forward multi-

layer neural network, which in this case consists of an input

layer, a hidden layer and an output layer. The ANN is

denominated feed-forward, because the data flow is strictly

forward through the entire network.

Each input parameter is indicated by a node in the input

layer, and no data processing occurs here, i.e. the input nodes

only act as collectors of the input signals (x1; . . . ; xM). After

that, the information is distributed from every input node to

every unit in the hidden layer, and it is amplified or debili-

tated by the synaptic connections between them, i.e. the

weights (wji). The pieces of information that arrive at the

hidden units are summed up by the summation function,
P

,

and transformed by the transfer function, F. From the hidden

layer, the data is re-distributed and weighted by a new set of

weights (wkj), and then passed on to the processing units in

the output layer, where the information is summed up and

transformed once again, generating the output signals

(y1; . . . ; yN). An extra input equal to unity is fed both to

the hidden and the output layers, and its corresponding

weight introduces an off-set or bias to the transfer function.

The ANN shown in Fig. 1 is a two-layer network, since only

two layers have processing units or artificial neurons. Even-

tually, every output can be represented by a generic expres-

sion of the inputs, e.g. for a network with M input signals, H

neurons in the hidden layer and N outputs:

yk ¼ Fo

XH

j¼0

wkjFh

XM

i¼0

wjixi

 ! !
where k ¼ 1; . . . ;N:

(1)

Nomenclature

e actual error

E error function

F activation or transfer function

H number of hidden neurons

M number of input signals

N number of output signals

w weight

x input signal

y output signalP
summation function

Subscripts

0 bias

h hidden layer

i arbitrary node in the input layer

j arbitrary neuron in the hidden layer

k arbitrary neuron in output layer

o output layer

Fig. 1. The feed-forward multi-layer neural network.
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In order to be able to store the internal representations of the

actual problem in the weights, the ANN must be trained.

This is done by feeding the network with a suitable set of

training data for which the correct outputs or targets are

available. This way of training is called supervised training,

since the targets are known. The most used method for

training multi-layer ANNs is the backpropagation algo-

rithm. The BP algorithm was popularised by Rumelhart

et al. [5] in 1986, but it was previously proposed by Bryson

and Ho in 1969 and Werbos in 1974 [3,4,7].

The idea with the backpropagation algorithm is to send back

through the network the errors (ek) generated, when the actual

Fig. 2. The sigmoidal transfer functions.

Fig. 3. Neural network for the performance maps of a fuel cell.

Fig. 4. LMS training error during the learning process.
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output differs from the target. For this reason, a least mean

square (LMS) error function, E, is introduced, according to:

E ¼ 1

2

XN

k¼1

ðekÞ2: (2)

During this procedure, local gradients of E with respect to

the weights, i.e. delta terms, are calculated, which later can

be used for adjusting the old weights. The weights, which at

the beginning are random numbers close to zero, are suc-

cessively updated in the direction of the decreasing error

gradient. The major assumption is that the weight correction

is proportional to this gradient, with a constant, Z, also

known as the learning rate:

Dwji ¼ �Z
@E

@wji

; (3)

Dwkj ¼ �Z
@E

@wkj

: (4)

The BP algorithm requires the use of differentiable transfer

functions, because of the calculation of the local gradients,

and the most widely used are the sigmoidal functions

(logistic-sigmoid and tanh-sigmoid) shown in Fig. 2.

Fig. 5. I–V chart for H2, utilisation ¼ 85% at 5 bar.

Fig. 6. I–V chart for CH4, utilisation ¼ 85% at 5 bar.
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3. Creation of the ANN model

3.1. The architecture of the ANN

The artificial neural network used in this study is a two-

layer feed-forward network, as shown in Fig. 3. The input

parameters are fuel utilisation, gas inlet temperature, voltage

and fuel flow. These inputs are passed forward to produce the

output parameters, air flow, current density, air outlet tem-

perature, fuel outlet temperature, mean solid temperature

and finally the reversible voltage.

To optimise the network, the number of hidden neurons,

the number of training epochs and the learning rate are

altered during the training phase by a trial-and-error method.

A network is produced, which is used for both hydrogen and

methane as fuel.

3.2. Data set for training and validation

Since the data on operating fuel cells is not available at the

present, a physical SOFC model is used to generate the

data required for the training of the ANN-based simulator.

Fig. 7. I–V chart for H2 fuel, by the ANN model at 5 bar.

Fig. 8. I–V chart for CH4 fuel, by the ANN model at 5 bar.
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Also the data needed for validation of the simulator will be

provided by the mentioned physical model. The physical

model is a finite volume element model that has been devel-

oped for simulation of a planar SOFC with internal reforming

[2]. The model calculates the temperature and current density

distribution, the species concentration and the channel flows.

This requires the solution of mass balances, chemical species,

and energy balances of the gases in the gas channels and the

solid structure for each volume element. This two-dimen-

sional, steady-state model was validated against other models

by comparing the simulated results obtained for a benchmark

test. A standard benchmark test was defined for a flat plate

cross-flow design, and the test input conditions have been set

up according to IEA Annex II report [1]. The developed model

showed good agreement with the other model results.

The physical model was used to calculate approximately

eighty different operational cases. Main operational para-

meters of the cell were varied, such as, operating voltage

(0.6–0.90 V), inlet gas temperature (750–950 8C) and gas

flows, while the pressure was kept constant at 5 bar. The fuel

flow, in each case, is varied in order to obtain the required

fuel utilisation (40–85%), while the air flow is tuned to

maintain the maximum solid temperature at a desired level.

For each inlet gas temperature, the maximum cell temperature

Fig. 9. Prediction of arbitrary operation points by ANN, using H2 as fuel at 5 bar.

Fig. 10. Prediction of arbitrary operation points by ANN, using CH4 as fuel at 5 bar.
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is set to be constant, 150 8C above the gas inlet temperature.

The fuels used when modelling the cell were: (a) hydrogen

with 90% by mole H2 and 10% by mole H2O and (b)

reformed methane with the composition 17.1% by mole

CH4, 26.26% by mole H2, 49.34% by mole H2O, 2.94% by

mole and 4.36% by mole CO2. These fuels are further on

referred to as H2 and CH4, respectively.

3.3. The training process

To be able to produce the correct output data, the network

was trained with an improved version of the BP algorithm,

i.e. the Levenberg–Marquardt algorithm. Half of the opera-

tional points were used to train the ANN, while the other half

was used for the validation. During the learning process the

error function was minimised with an increasing number of

training epochs, as shown in Fig. 4. An epoch is a cycle that

is finished when all the available training input patterns have

been presented to the network once.

Once the ANN provided a satisfactory output on the

validation data set, cross-validation was carried out with a

test set (unseen data, i.e. new operational points with

arbitrary fuel utilisation, voltage and gas inlet temperature).

After this final test, the network was ready to generate I–V

characteristics for a broad range of conditions.

4. Results

The I–V characteristics generated by the ANN model

showed good consistency with the physical model, as can

be seen in Figs. 5–8.

Figs. 5 and 6 show I–V characteristics for H2 and CH4,

respectively, when fuel utilisation is 85%.

When the fuel utilisation is added as an extravariable, three-

dimensional I–V charts are obtained, showing more complete

performance maps of the SOFC. In Figs. 7 and 8, the training

and validation points are denoted as black dots, while the

result generated by the ANN model is shown as isothermal

surfaces. The concordance between both models is clear.

The result of the test with the unseen operational data

points is shown in Figs. 9 and 10 later on. It can be stated that

the ANN is able to capture the generic relationship between

inputs and outputs, even for these arbitrary points.

In addition to the figures given earlier, the average and the

maximum discrepancies between the physical model and the

ANN model are summarised in Table 1. As can be seen, the

most difficult parameter to predict is the air flow, which has a

maximum error of 3–4%. The remaining parameters have a

maximum error of less than 1%. On the other hand, the

average values are all well below 1%.

5. Conclusions

The SOFC model based on an artificial neural network

showed a good congruence with the physical model, which

was used to generate the training, validation and test data.

The average values of the errors are well below 1%, and the

maximum errors are below 4%. Besides the numerical

accuracy, the ANN model is much faster and easier to

use, which makes it suitable for the generation of perfor-

mance maps. The ANN model showed to be generic to other

operational conditions as well.

In the future, this type of statistical model could be trained

with data from an experimental set up, and the ANN could

be used to predict the different parameters of the SOFC with

good accuracy, reducing development costs and the need for

extensive experiments.
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Table 1

Distribution of error for the different output parameters

Average error ANN

for H2 (%)

Maximum error ANN

for H2 (%)

Average error ANN

for CH4 (%)

Maximum error ANN

for CH4 (%)

Air flow 0.61 2.82 0.58 3.84

Current density 0.21 0.90 0.17 0.99

Reversible voltage 0.03 0.10 0.02 0.08

Air outlet temperature 0.03 0.20 0.05 0.23

Fuel outlet temperature 0.10 0.42 0.05 0.55

Mean solid temperature 0.09 0.37 0.04 0.15
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